
 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data 
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of 
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a 
collection of information if it does not display a currently valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1.  REPORT DATE  (MM-DD-YY) 2.  REPORT TYPE 3.  DATES COVERED (From - To) 

11/26/2008 Year III (Option 2) Final Report 11/27/2007 to 11/26/2008 
4.  TITLE AND SUBTITLE 
 

Multi-Sensor Information Integration and Automatic Understanding 

5a.  CONTRACT NUMBER 

N00014-05-C-0294 
5b.  GRANT NUMBER 
5c.  PROGRAM ELEMENT NUMBER 

 
6.  AUTHOR(S) 
 

Matthew Welborn 
Austin Eliazar 

 

5d.  PROJECT NUMBER 

 
5e.  TASK NUMBER 

 
5f.  WORK UNIT NUMBER 

  
7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

         
1. PERFORMING ORGANIZATION 

REPORT NUMBER 

 

SIG.ONR.OPT2.FINAL 

Signal Innovations Group 

1009 Slater Road 

Durham, NC  27713 
 
9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

Office of Naval Research 

ONR 251: Wade Wargo (703) 696-2574 

875 N. Randolph Street Suite 1425 

Arlington, VA 22203-1995 

10.  SPONSORING/MONITORING AGENCY 
       ACRONYM(S) 

 

11.  SPONSORING/MONITORING AGENCY 
REPORT NUMBER(S) 

 
12.  DISTRIBUTION/AVAILABILITY STATEMENT 

A 
13.  SUPPLEMENTARY NOTES 

 
14.  ABSTRACT 

This document is submitted to ONR as a final report for the Year III effort of the ONR C2CS research carried out by the 

team of Signal Innovations Group (SIG), Lockheed Martin and NAVAIR (henceforth referred to as the research team) 

to developed technology to process general video data of interest for base and port security. This research effort has 

also produced a real-time implementation of the tracking and anomalous behavior detection system that runs on real-

world data – either using real-time uncompressed video sensors or faster-than-real time on archived video data. Also, 

a key success of this research effort is that this ONR-funded C2CS effort has transitioned into multiple funded 

Department of Defense programs to address relevant and challenging applications in airborne persistent surveillance 

and airborne IED detection. 

 

15.  SUBJECT TERMS 

Multi-hypothesis tracking, particle filters, anomalous behavior detection, Bayesian tracking 
16.  SECURITY CLASSIFICATION OF: 17. LIMITATION 

OF ABSTRACT: 

 

18.  NUMBER 
OF PAGES 

   

19a.  NAME OF RESPONSIBLE PERSON (Monitor) 
a.  REPORT 

Unclassified 

b. ABSTRACT 

Unclassified 

c. THIS PAGE 

Unclassified 
         Dr Matthew Welborn 
19b.  TELEPHONE NUMBER (Include Area Code) 

(919) 794-3322 
 Standard Form 298 (Rev. 8-98)        

Prescribed by ANSI Std. Z39-18 



Final Report N00014-05-C-0294                                                                            November 2008 

 
 

Signal Innovations Group, Inc.   2 
 

 

SIGNAL INNOVATIONS GROUP, INC. 

Final Technical Report 

Multi Sensor Information Integration and 

Automatic Understanding                                                    
 

Contract Number: N00014-05-C0294 

 

 

Submitted to 

 

Office of Naval Research 

 

 

 

 

 

 

Submitted by 

 

Signal Innovations Group 

1009 Slater Road 

Suite 200 

Durham, NC  27703 

 

 

11/26/2008 

 

 

 

 



Final Report N00014-05-C-0294                                                                            November 2008 

 
 

Signal Innovations Group, Inc.   3 
 

Table of Contents 

Table of Figures ........................................................................................................................................................................ 4 

Executive Summary ................................................................................................................................................................ 5 

1 Object Tracking .......................................................................................................................................................... 7 

1.1 Mathematical Framework ..................................................................................................................................... 7 

1.2 Trajectory Model ....................................................................................................................................................... 9 

1.3 Shape Model .............................................................................................................................................................. 11 

1.4 Color Model ............................................................................................................................................................... 13 

1.5 Object Segmentation & Data Association ...................................................................................................... 16 

1.6 Empirical Evaluation ............................................................................................................................................. 18 

2 Behavior Modeling.................................................................................................................................................. 22 

2.1 Problem Statement ................................................................................................................................................. 22 

2.2 Behavior Models ...................................................................................................................................................... 22 

2.2.1 Instantaneous observations .......................................................................................................................... 22 

2.2.2 Full Object trajectories ..................................................................................................................................... 23 

2.2.3 Behavior Modeling Results............................................................................................................................. 24 

3 Hardware System Architecture ......................................................................................................................... 26 

3.1 Camera & network considerations .................................................................................................................. 26 

3.2 Computational platform ....................................................................................................................................... 27 

4 Sensor management .............................................................................................................................................. 28 

4.1 Mechanical pan/tilt/zoom .................................................................................................................................. 28 

4.2 Virtual pan/tilt/zoom ........................................................................................................................................... 28 

4.3 Data compression ................................................................................................................................................... 29 

5 Compressive sampling .......................................................................................................................................... 30 

5.1 Background on Compressive Sensing ............................................................................................................. 30 

5.1.1 Compressive Imaging ....................................................................................................................................... 31 

5.1.2 Applications .......................................................................................................................................................... 31 

5.2 Time Multiplexing ................................................................................................................................................... 32 

5.3 Mathematical Foundations.................................................................................................................................. 35 

5.3.1 Finding Pixel Motion ......................................................................................................................................... 37 

5.4 Implementation ....................................................................................................................................................... 38 

5.5 Discrimination using Compressive Measurements .................................................................................. 39 

5.6 Preliminary Results ................................................................................................................................................ 39 

6 Technology Transition .......................................................................................................................................... 41 

6.1 Airborne Persistent Surveillance ...................................................................................................................... 41 

6.2 Active Learning ........................................................................................................................................................ 42 

References ................................................................................................................................................................................ 43 



Final Report N00014-05-C-0294                                                                            November 2008 

 
 

Signal Innovations Group, Inc.   4 
 

 Table of Figures 
 

Figure 1: A visualization of the trajectory model ..................................................................................................... 10 

Figure 2: A visualization of the stochastic shape models...................................................................................... 12 

Figure 3: Typical values of the color model for a particular pixel in a scene................................................ 14 

Figure 4: Probability of the color given the multi-hypothesis color model for the background .......... 19 

Figure 5: China Lake outdoor surveillance dataset ................................................................................................. 24 

Figure 6: China Lake behavior analysis recognition rates and confusion matrix. ...................................... 24 

Figure 7: A Representation of an analog cube of image intensity information ........................................... 32 

Figure 8: The cube of image information which needs to be sampled. ........................................................... 33 

Figure 9: The traditional methodology for sampling a video frame ................................................................ 34 

Figure 10:  A 128x128x128 data cube used for simulations ............................................................................... 34 

Figure 11: The result of compressive sampling on the data cube ..................................................................... 35 

Figure 12: The information scene by a traditional camera .................................................................................. 38 

Figure 13: The scatter plots of the QCF features ...................................................................................................... 40 

Figure 14: Initial results for airborne persisitent surveillance .......................................................................... 41 

Figure 15: Initial results showing use of active learning for improving analyst performance ............. 42 

 



Final Report N00014-05-C-0294                                                                            November 2008 

 
 

Signal Innovations Group, Inc.   5 
 

Executive Summary 
 

 

This document is submitted to ONR as a final report for the Year III effort of the ONR C2CS research 
carried out by the team of Signal Innovations Group (SIG), Lockheed Martin and NAVAIR 
(henceforth referred to as the research team) to developed technology to process general video 
data of interest for base and port security. This effort has been directed toward three primary goals: 

• Develop an automated approach to real-time object tracking & anomalous behavior 
detection for the asymmetric threat, 

• Perform this analysis while utilizing all possible data to maximize performance, but also to 
operate in a regime of limited training data and changing conditions, and  

• Integrate informational content from multiple sources – including both sensors and human 
analysts. 

In addition, for the final Year III of this project we have had a particular focus on transitioning the 
algorithms and other technology developed under this effort to airborne persistent surveillance 
applications that require fusion of automatic approaches with analyst to support decision making 
with large data sets. 

A key feature of the real-time tracking and behavior detection system developed is that the 
algorithms automatically learn the statistical properties of the background environment, and are 
able to track new entities entering a scene. Importantly, the algorithms perform a full Bayesian 
analysis, in that they simultaneously maintain multiple hypotheses about object states (position, 
velocity, etc.), with this of particular relevance for tracking multiple moving entities through 
occlusions. The maintenance of the multiple hypotheses allows the algorithm to constantly 
maintain a level of confidence in inferences at any given time; this is of importance in the context of 
sensor management, in which multiple sensors may be sequentially deployed to minimize inference 
uncertainty. 

The research team has also used the products from the above analysis to develop statistical models 
of “typical” or “normal” behavior observed in video data. In this context features are extracted from 
the moving entities, including spatial location, size, and vector velocity, with these evolving as a 
function of time. If any entity is observed subsequently to occur with low likelihood, as quantified 
by these statistical models, then an alert is made to a human operator. If the human deems the 
activity to not be anomalous, then the associated model can be refined using these new data. In this 
context the algorithm continually learns and evolves, as new data are observed, and the definition 
of “typical” or “normal” is linked to the scene under test. 

The basic framework developed above has been successfully demonstrated on several video data 
sets, including data collected at the SIG facilities, as well as data collected at NAVAIR, China Lake. In 
addition, Lockheed Martin has addressed airborne data collected on a moving platform (aircraft). 
Lockheed Martin has also developed algorithms to address processing of video collected on 
multiple cameras, handoff of targets/scenes between multiple cameras, and the feasibility of 
performance moving object detection and tracking using a framework based on compressive sensing 
techniques. The final topic, that of a compressive imaging framework,  is intended to address 
applications such as Department of Defense persistent surveillance systems where the combination 
of extremely high resolution sensors and large field of regard has created the situation where 
timely exploitation is limited by key system parameters such as sample rate, data bandwidth and 
sensor revisit rates. 
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The key results of this combined three year effort by the research team are significant and have 
demonstrated the effectiveness of the principled approach of using complete probabilistic modeling 
throughout the detection and tracking algorithm formulation and implementation. The team has 
demonstrated a full Bayesian object detection & tracking approach that is robust to challenging 
real-world lighting and background changes through the development of elegant non-parametric 
statistical background modeling. In addition, the use of multi-hypothesis tracking models has 
provided for accurate object tracking performance in the presence of dynamic and repeated object 
occlusions. These particular results have been critical in providing the quantitative performance 
gains needed to allow this C2CS technology to transition from the initial ground-based security 
application to the more challenging airborne persistent surveillance application space. 

This research effort has also produced a real-time implementation of the tracking and anomalous 
behavior detection system that runs on real-world data – either using real-time uncompressed 
video sensors or faster-than-real time on archived video data. This implementation was made 
possible through the development of efficient algorithms for tracking of posterior probability 
distributions using particle filter techniques. This real-time implementation opens the door to more 
sophisticated implementations where a remote sensor can perform real-time intelligent video 
compression – another key enabling capability for transition to persistent surveillance applications.  

The solutions developed under this effort for anomalous behavior detection are based on both 
instantaneous & long-term probabilistic behavior modeling. For the instantaneous case, the system 
automatically learns, in real-time, the statistical properties of the observed object behaviors and is 
therefore able to alert the operators to anomalous behavior activity. For the long-term behavior 
analysis, the algorithms allow the system to parameterize the object trajectory based on the entire 
observed track history and to accurately classify the object class and behavior using the 
parameterized models. 

A final key success of this research effort is that this ONR-funded C2CS effort has transitioned into 
multiple funded Department of Defense programs to address relevant and challenging applications 
in airborne persistent surveillance and airborne IED detection. In particular, the technology 
developed under this program has transitioned into funded efforts to support Army persistent 
surveillance programs where the detection and tracking capabilities will be used to help support 
future IR capability for the Constant Hawk platform. Additional work has been funded to transition 
this technology to support development of Air Force persistent surveillance programs through 
funding from AFRL. Thirdly, the initial conceptual work done on the use of relative information gain 
metrics to perform sensor management under this ONR effort has been the basis of technology 
transition and funding through the Army Night Visions Labs (NVESD) to develop Analyst-in-the-loop 
technology to optimize the interaction of human analysts and automated classification algorithms 
for IED detection applications. The transition of this ONR-funded research has resulted in over 
$450k per year for these different programs of additional non-ONR transition funding, and 
additional funding is anticipated. 
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1 Object Tracking 
A key goal of this C2CS project has been the detection of anomalous behavior within a video stream.  
This requires the modeling and analysis of the motion for each observed object within the field of 
view.  However, underlying this analysis, there needs to be a reliable method for finding and 
tracking these objects, to provide trajectories for analysis. This tracker needs to be robust and 
reliable under any real world conditions that the camera may capture. The general solution to this 
challenge is still an open problem.  

What we present here represents a significant improvement over the state of the art, specifically 
tailored for the goal of anomalous behavior detection.  This section is devoted to detailing the 
tracking method developed at SIG to provide the relevant pose information for all of the foreground 
objects on the screen.  

The objective of this tracking is to detect all of the foreground objects within a scene, and provide 
the position and velocity information for each of these objects.  Before launching into a proposed 
solution for this problem, it is appropriate to first define the problem more specifically.  Next we 
will detail what this problem means from a mathematical sense.  Finally, we can focus on how these 
definitions and equations can translate into an algorithmic solution to the tracking problem. 

The first term that needs to be clarified is the definition of an object.  People tend to have an 
intuitive understanding of this concept, but this definition can change between people, and even for 
a single person depending on the context.  When a person is wearing a jacket, the person and the 
jacket may be considered a single object.  Yet when the person takes off the jacket and walks away, 
the jacket is generally regarded as a separate object from the person.  So it seems that the 
specification of objects is dependent on their behavior.  This is especially relevant for the tracking 
problem, as it implies that two parts which move together can be considered a single object. 

For the purposes of this problem, we specify and object as a set of pixels in the image plane that 

exhibit highly correlated motion.  This definition captures much of the semantic meaning of an 
object, while projecting it into terms applicable to the video problem.  This does imply that some 
objects, from our specification, may seem as two distinct parts to a human with greater scene 
understanding, such as two people walking together.  However, for the purposes of detecting 
anomalous behavior, it should be clear that this distinction is irrelevant; if either object is behaving 
unusually, the activity will be recognized either individually or as the group. 

The other concept that needs to be specified clearly is the idea of tracking itself.  It seems fairly 
clear when we talk about an object that it has a distinct position and velocity to it.  Even for a 
deformable object, such as a person swinging their arms as the walk, that there is a gross average 
motion to the object.  While a situation can be envisioned where the internal motion of an object is 
relevant to its behavior, we have decided that such a complex model is beyond the current scope of 
this project.   Therefore, when we talk about the pose of an object, we are referring to the gross 
position and velocity of the object as a whole, without regard to the configuration of its individual 
elements. 

Given this set of definitions, we can now talk about the tracking problem in a rigorous mathematical 
manner.  As tracking is inherently an ambiguous problem, with only indirect observations of the 
true state ever available, we need to talk about tracking in terms of probability.  Stated as a 
Bayesian probability, the problem being solved is  

 

),|( 11 ttt IIp
v

++µ
      

 (1) 

1.1 Mathematical Framework
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where 1+tµ  is the set of all object poses (e.g. position and velocity) at time t+1, 1+tI  is the observed 

image at that time, and tI
v

 is the set of all images up to and including time t.  Computing this 

probability directly is difficult, without knowing something about how the objects appear in the 

images.  Therefore, we introduce a new pair of terms, 1+tA  and tA
v

 which are the assignment maps 

for the corresponding images.  This assignment map is set of correspondences for each pixel, 
indicating which object is currently being observed by that pixel.  If no object is observed, the pixel 
is assumed to be viewing the background.  We can now state the problem slightly differently, 
conditioned on assignment maps. 
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where the last equation makes use of the fact that the previous estimations of pose and assignments 
are independent of the current image.  At this point, we would like to make one approximation to 
this equation.  Given a set of images, along with the assignment maps and object poses for those 
images, we assume that this data can be represented statistically as a color model, C, a shape model, 
S, and a trajectory model, T.  These three models are then treated as a sufficient statistic of the 
previous behavior.  This allows us to rewrite the equation in simplified form. 
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At this point, the equation consists of two distinct parts.  The first term evaluates the current time 
step, while the second term forms a distribution over prior behavior.  Let us focus on the first term 
for a moment.  Through repeated application of Bayes Rule, we find 
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Fortunately, this long equation is unnecessarily complex.  There are a number of independences 
that can be exercised to reduce the number of terms.  First, note that the shape and trajectory 
models are purely predictive models of the assignments and poses of the various objects.  Given the 
current poses, the trajectory model is irrelevant.  Likewise, given the current assignment map, the 
shape model is not needed. This reduces the first two terms.  Next, we notice that for the second 
and third term, there is no observation of the image.  Therefore, the color model contains no 
information about either the assignment map or the poses.  Similarly, we can remove the shape 
model from the third term, as without an assignment map or an image, the shape model is 
unnecessary.  These independences allow us to rewrite the equation as 

 

∑ ∑
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Notice that now our problem statement has clearly segmented itself into three separate and distinct 
modeling problems – trajectory, shape, and color – with each model building on the distribution of 
the previous one.  There only remains one term which is ambiguous, which is the last term.  
However, remember that this term is referring to a sequence of time steps.  If we factor out one of 
these time steps we find 
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which is identical to our original formulation, one step back in time.  This means that we can reuse 
our previous distribution of the state as a prior for our new state.  

This full distribution is obviously intractable to maintain completely, and has no closed form 
solution that can provide a parametric distribution as an answer.  Instead, we take the usual 
approach of using a Mote Carlo sampling to represent the non-parametric distribution.  However, 
most approaches choose to sample from the distribution at multiple points in the process.  A 
particle filter, for instance, would perform a random sampling at each of the three models.  In our 
proposed method, each of the three models provides a full probability distribution.  We use this 
complete probability to provide the most accurate measure of the joint assignment map and object 
poses.  We then sample once from the full posterior to provide a set of distinct hypotheses.  Each 
hypothesis is then used to update separate set of prior behavior models, C, S, and T. 

The first of the three core models is the trajectory model.  The purpose of this model is to provide a 
purely predictive model, which ‘blindly’ evaluates the probability of a given pose, given only the 
previous poses of that object.   

 

1.2 Trajectory Model
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The mathematical derivations detailed above tell us what this model is, and how to incorporate the 
distribution into the full posterior.  However, what this math does not tell us is how to build this 
model.  In this section, we detail how this model is constructed for the object tracking software. 

Recall that the pose to be evaluated is the position and velocity of a given object.  Without explicit 
knowledge of depth information for the camera scene, this tracking is performed in the (x,y) 
coordinates of the image plane.  The model assumes second order motion, with the x and y motion 
operating independent of each other.  Acceleration of the objects has been observed to be 
unpredictable, and is treated as a source of random noise in this model.  Furthermore, we make the 
assumption that all noise is Gaussian distributed.   

 

     (9) 

 

 

 

 

All of the Q terms in the above equation represent mean zero Gaussian noise.  Models are updated 
for the next time step using the hypothesized position of the object from the current time step.  
Updates are performed with a traditional Kalman update. 

 

Figure 1: A visualization of the trajectory model.  A point of reference for each object (e.g. center of mass) is 

tracked and the model maintains a non-parametric distribution of pose for each object. Object interactions 

are captured as this is similar to a joint particle filter over all object, but it also relaxes assumptions on data 

required for Kalman filters. 

The resultant model closely resembles a Kalman filter in its basic form.  However, it is important 
not to confuse the predictive trajectory model, which estimates the future motion of the object, with 
a full Kalman filter, which would provide a Gaussian posterior distribution over poses for the 
object.  The posterior distribution over poses is maintained by the multiple sampled hypotheses, 
each of which results in its own distinct trajectory model.  This allows the observation distribution, 
and thus the posterior distribution, to be non-Gaussian, and even non-parametric. Figure 1 shows 
an example of the trajectory model for a typical video sequence with three foreground objects. 

xt+1 = xt + x’t + Qx 

x’t+1 = x’t + Qx’ 

yt+1 = yt + y’t + Qy 

yt+1 = y’t + Qy’ 
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The purpose of the shape model is to use a given set of object poses to predict the assignment map. 

),|( SAp µ       (10) 

This allows the tracker to incorporate valuable structural information about the objects, and thus 
capture the spatial dependencies between pixels.  Like the trajectory model, the shape model is 
‘blind’ in that it does not include observational evidence in its prediction. 

The use of a learned shape model is highly unusual in video tracking problems like this one.  Many 
existing methods are concerned with tracking individual key points, such as structure from motion 
or optical flow methods.  These methods will treat a given patch of the image as locally static, and 
assume the entire patch moves together.  As most distinctive points in an image arise from object 
boundaries, this is not only a false assumption, but a possibly volatile one as well.   

Other methods will use explicit hand built models of specific object types, such as stick figure 
models of people.  However, these methods are highly specific to a single domain and viewing angle.  
Additionally, they are incapable of handling novel object types, or alterations to existing ones, such 
as a person carrying a package. 

These previous approaches all have their short comings, in their assumptions and their practice.  
Most important, however, is their inability to address the underlying problem posed by our derived 
mathematical formulation.  None of these methods predict an assignment map, or evaluate the 
probability of a hypothesized one.  Therefore, we derive a new type of shape model to 
accommodate our need.  This model is based primarily upon the stochastic occupancy grids often 
used for mapping and path planning in autonomous vehicles.   

First, we consider each object as its own frame of reference.  As an object moves, so does the origin 
for that object’s own coordinate system.  This implies that for the most part, the components of an 
object tend to move together, or at least have repeatable configurations. 

Second, we assume that the probability of each pixel, given the origin and the past history, is 
spatially independent.  This allows the probability of occupancy for each pixel to be modeled 
independently of other pixels.  This approximation is driven by the intractable nature of computing 
a fully covariant shape model, and is not as severe as it sounds.  Better approximations may be 
possible, but for the purposes of this tracker, were found to be unnecessary.  

Given this mobile coordinate system, we can model the probability of any given pixel belonging to 
this object by performing a change of coordinates from the image coordinate system into the object 
coordinate system.  Once this remapping is established, the raw probability of occupancy can be 
computed using simple probabilistic frequency models.  The probability of a given pixel being 
assigned to this object is  

 

(# of times assigned to this object) / (# times the pixel has been observed)  (11) 

 

It is important to note that these two counts are maintained separately, rather than directly 
maintaining the probability of occupancy.  This implies that when a pixel is occluded, either by 
another foreground object, or theoretically by a known background object, the probability of 
occupancy is not changed.  The resultant model provides a stochastic occupancy map for each 
individual object, such as can be seen in the figure above. 

1.3 Shape Model



Final Report N00014-05-C-0294                                                                            November 2008 

 
 

Signal Innovations Group, Inc.   12 
 

For most deformable objects, more recent observations are more relevant than older ones.  
Mathematically speaking, this means that at every time step there is some chance, p, that something 
completely new occurs, and the previously observed data is no longer relevant.  As this probability 
is cumulative, this has the net effect of exponential decay on the weight of the observations.  The 
numerator and the denominator of the above equation are both multiplied by (1-p) at each time 
step, reducing the affect that these previous observations will have on the future.  Note that we 
apply this decay to both terms, as compared to their quotient.  This means that a point under 
known occlusion for several time steps will change its net probability, but the strength of this 
probability will drop.  Therefore, the next observation will have significantly greater impact on the 
probability than normal. 

 

 

Figure 2: A visualization of the stochastic shape models.  The left image shows the raw input video image. The 

other three images show a heat map of the probabilities output from the shape model for each of three individual 

objects. Note that the dynamic occlusions in the original image are not present in the stochastic shape models. 

 

For most of our experimentation, this model is first initialized to a very low value, on the order of 
10-5, with the strength of the prior equal to one or two observations.  This value is able to be 
changed in the delivered software through the graphical user interface.  Note that this initialization 
value is not a typical prior, in that it is equivalent to previous observations, and will slowly be 
overwhelmed by future evidence.  Instead, this value represents a background noise, a chance that 
something completely new might happen.  Therefore, the background noise does not undergo 
exponential decay like the rest of the evidence, but maintains its strength regardless of the number 
of observations.  This has the effective result of placing a minimum and maximum probability of 
occupancy for a given pixel.   

This stochastic shape model is a powerful tool for the tracking algorithm to handle ambiguous 
situations.  This model is crucial for allowing pixel data associations as the tracked object passes 
through occlusions with both static background objects and dynamic foreground objects.  As pixels 
pass both in and out of occlusion, the shape model is able to remember the past behavior of the 
object’s shape, and continue to expect similar assignments as the observations become less 
informative. 

This spatial structure preserved by the shape model is also critical for resolving the identity of 
entire objects as they pass in front of one another.  The temporal dependence on shape that is 
captured by this model is able to resolve the ambiguities between the tracked objects, and ensure 
that the tracker does not diverge, or swap identities. 
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Unlike the trajectory and shape models described above, the color is an observational or evidentiary 
model.  Given a hypothesis of the world state, the goal of the color model is to describe how well the 
observational evidence matches that hypothesis.  

  

),,|( CAIp µ        (12) 

This is a very important distinction in modeling, as the predictive trajectory and shape models have 
already provided us with a distribution over possible poses and assignments.  There is no 
distribution over images to reason about, only one observation which is evaluated based on the 
assumptions of pose and assignment generated from a single hypothesis. 

This distinction is a very important one when considering related work on previous color models.  
For most of these existing models, the problem is often framed as “background subtraction”, where 
the color model is used to identify those regions of the image which are of low probability to fit the 

current color model.  This is the same as posing the question in the inverse form, ),|,( CIAp µ .  As 

can be seen from the equations at the start of this chapter, this formulation obviously mishandles 
the evidence, and disregards the prior probabilities of alternative hypotheses.  At the least, this 
approach regards each hypothesis as equally probable in the prior. 

While the formulation used by alternative models is not solution we need for this approach, the 
underlying color models could still provide a good model of the behavior of the background colors.  
The simplest of these models are usually some derivation of interframe differences.  In this model, a 
single canonical image is constructed as the ‘true’ image that is expected to be observed, if no 
foreground objects were present.  This presents a single intensity value for each pixel, and any 
deviation from this value is treated as noise.  The noise models across the image are identical, and 
generally treated as Gaussian. 

These interframe models tend to be fairly brittle, especially in dynamic environments.  Many 
elements of the world, such as trees and reflections, tend move slightly in the background, without 
providing a meaningful object to track.  Even in indoor static situations, slight vibrations and 
lighting changes can produce severe amounts of false positives.  These increase over time, and 
generally make interframe models unusable for any decent amount of time without regular 
resetting, generally involving a human operator. 

To address many of these small changes in a background environment, many researchers treat the 
background color models as multimodal.  Here, the each pixel in the world is assumed to have a 
finite number of ‘states’ that it can achieve.  Each of these states corresponds to a separate mean for 
a probability distribution, and occasionally maintains a separate variance as well.  As with 
interframe models, the noise models for these distinct modes are represented as Gaussians as well, 
resultant in a form called Gaussian Mixture Models (GMMs).  Often, each of these Gaussian models is 
weighted with a relative probability, to allow some states to occur more often than others.   

While these methods are better at handling foliage and similar dynamics, they are still prone to 
systematic failure with sudden or unusual changes.  This is largely due to their inability to react 
quickly to new behaviors in the distribution, and their inherent complexities in the data association.  
For predicting a new color, a mixture of Gaussians works well, as a summation over all of the 
possible states (i.e. Gaussian modes) that the mixture contains.  However, when updating these 
models, the precise state to be updated needs to be known.  Updating GMMs is notorious for the 
under-specification of this data association problem.  For instance, one mode can be hidden within 
another, when the modes overlap in their first standard deviation, and the entire non-symmetric 

1.4 Color Model 
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distribution will be over generalized with a single wide variance Gaussian.  Also, the addition of 
new modes is an undefined problem in an online algorithm.  These complexities and local optima 
tend to greatly reduce the effectiveness of GMM color models. 

The color model used in this project consists of a new multi-hypothesis model, with similarities to 
both of these previous methods.  We first describe this method in relation to a background color 
model.  Afterwards, we show how this model is adapted to a color model for the distinct foreground 
objects being tracked. 

In this color model, each pixel maintains a history of the N most recent observations of the 
background at this point.  As with the shape model, if a pixel is occluded by a foreground object, no 
observation is recorded, and the model is not updated for that pixel in any way.  Furthermore, we 
treat the color model for each pixel as independent of the surrounding pixels.  This significantly 
reduces complexity of the model, while not resulting in a significant loss of information.   

Given this history of N previously observed values, we can treat each of these previous time steps as 
a distinct hypothesis of the ‘true’ color emanating from the real world.  The current pixel intensity is 
allowed to deviate from this hypothesized according to our noise model, but each hypothesis 
generates its own probability value.  These probabilities are then combined with a weighted sum to 
generate a total probability for the observed intensity. 

∑
=

−−− ≡≡=∈
N

n
nttnttnttt iipiiiipCbackgroundiip

1

)(),|(),|(    (13) 

where ti  is the intensity of a specific pixel at time t , and ntt ii −≡  implies that ti  and nti −  are both 

drawn from the same underlying state in the real world.  For our purposes, we treat )( ntt iip −≡  as a 

uniform constant value, though it would 
be reasonable to treat this as a time 
dependent function. 

 

This relatively simple model has several 
desirable properties.  First, it treats the 
distribution as an average over 
probabilities from several frames, rather 
than more generic models such as a GMM 
which treat the distribution as a single 
probability from the average intensity 
over several frames.  This allows for a 
much more nimble distribution, capable 
of quickly adapting to new changes in the 
environment.  As soon as a given value is 
recognized as being a part of the 
background (through other elements of 

the tracker, or simply as a sampled hypothesis), the model immediately recognizes other similar 
values as being of higher likelihood.  Models which explicitly estimate the mean of a distribution 
will continually lag behind the true current mean.  This is especially problematic for gradually 
changing appearances, such as shadows. 

Additionally, this model has a less parametric structure to its probability distribution, due to the 
large number of weak modes in the model.  In effect, this model asymptotically approaches a non-
parametric histogram model as the length of the temporal history is increased.  If a single value is 

 Figure 3: Typical values of the color model for a particular 

pixel in a scene showing the N previous observed values 

and the current pixel value as a “query” relative to the 

multi-hypothesis color distribution. 
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observed repeatedly in the data, the model can be seen as maintaining multiple modes at that point, 
all with the same mean.  This has the net effect of treating that mean as having an increased weight, 
compared to other points in the distribution. 

Finally, the formulation of the model makes the data association problem irrelevant to the updating 
of the model.  While the prediction still integrates over all possible data associations of the current 
observation to previous ones, this association is not used during the update stage.  A new 
hypothesis is created, regardless of the value of this new observation, removing the pitfalls of 
missed associations or values falling in the tails of the existing distributions. 

It has become canonical in computer vision to treat color noise models as Gaussian distributions.  
However, in our own experimentation, we have found these models to prove a poor fit to the 
observed behavior of our cameras.  Observing a completely stationary object with consistent 
lighting, an empirical histogram of the observed intensities for a given pixel were distinctly more 
peaked than a Gaussian, and in fact were more accurately fit by a double exponential distribution, 

||2 µλλ −⋅− xe .  It is this distribution that we use for the noise distribution in this color model.  

While this method has been described until now in terms of the background color model, the same 
basic model is applicable to the foreground objects as well.  As foreground objects are moving 
between frames, it becomes necessary to move the corresponding color model as well.  This can be 
achieved through a change of origin, in the same fashion as the stochastic shape models described 
earlier.  However, due to the dynamic nature of a foreground object, including internal motion, it is 
necessary to allow greater leeway in the distributions for foreground color models.  This is 
achieved by a weighted combination of the probability output from the color model with a strong 
prior model for the color distribution.  Essentially, we maintain a reasonable chance that the colors 
previously observed at a given location will not be correlated with the currently observed color.  
Therefore, for some non-trivial amount of the time, we can expect the probability of the current 
observation to be uniformly distributed, and thus equal to 1/256, the total range of intensities 
returned by our camera.  Intuitively, this background probability can be seen as placing a floor on 
the possible probability of any single pixel observation, and preventing a single unlikely event to 
ruin the total evaluation of the hypothesis. 

One final extension to the color model is implemented, to handle changing lighting conditions.  In 
outdoor scenes, the environmental lighting can change rapidly and drastically even over short 
periods of time.  Additionally, automatic gain control systems are often slow to respond, in accurate, 
or respond to the inclusion of a new foreground image rather than an actual lighting change.  To 
handle these lighting changes, each frame estimates the total change in lighting observed at the 
current frame.  This is done using interframe changes in the intensity of the background pixels only.  
Since the background pixels are assumed to be spatially independent with symmetric noise, the 
average interframe changes can be assumed to provide a fairly low variance on the true lighting 
change between the frames.   

The intensity values reported by the camera are known to be an exponential function of the number 
of photons detected.  As the illumination of a scene increases, all pixels do not vary their intensity 

linearly, but rather in the form of 
α+

−= 1
1tt ii  for some lighting change of α .  Therefore, the known 

background pixels are used to estimate the best fit for α  in a given time step.  This lighting change 

is then used, cumulative with the previously observed lighting changes, as an estimate of the 
lighting conditions in the next time step to correct that image.  As these lighting corrections are 
done without any dependence on observations or hypotheses for the current time step, they can be 
applied during the preprocessing step, to help adjust the virtual gain of image, and provide a much 
lower amount of noise in the color models, by mitigating the systematic illumination noise.  This 
method provides drastically improved results for many situations, particularly at dawn and dusk, 
and during partly cloudy conditions. 
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We have described the three models – color, shape and trajectory – which represent the core of the 
tracking engine.  These three models are combined to give the probability of a set of poses and an 
assignment map, based on the evidence available.  However, these models merely provide a 
probability distribution.  Maintaining this probability distribution over poses and assignments, and 
updating the models based on this joint distribution, is not a straight-forward process.  Each 
distinct point within the joint distribution will update the three models in a different way. 

In the method developed for this project, this posterior distribution is represented by a finite set of 
distinct hypotheses, each one representing a different state of the system.  This state space is very 
large, especially as the number of objects increases.  However, it is important to note that the 
interaction between objects is fairly weak.  The estimation of the pose for one object is rarely 
affected by the estimation of a second object.  Therefore, we reduce the dimensionality of the state 
space by allowing each object to maintain its own independent set of hypotheses.  Each object then 
maintains a distinct set of hypotheses, each one consisting of a unique trajectory, shape, and color 
model, as updated by a single sample of the joint pose and assignment map for this object. 

When these objects do interact, it is often sufficient to use the most likely estimation for one object 
to evaluate the distribution for the other, and vice versa.  This means that in certain situations, not 
all of the evidence is used, such as when two objects pass by each other.  It is possible that in this 
situation, each object now has a multimodal distribution, representing the uncertainty in the 
resultant data association, possibly leading to the identities of the two objects to be swapped in 
some hypotheses.  Intuitively, it would seem that the joint distribution between these two objects 
would help resolve the ambiguity.  However, empirical evaluation of the resultant probability 
distributions in such a situation has found that the probability distributions demonstrate only a 
limited change when using a joint distribution of the two objects over an independent one.  The 
increase in computational efficiency and the significant resultant increase in available hypotheses 
for each object, more than justifies this approximation of independence between the objects.  A 
hybrid model, which models objects as a joint distribution solely when they are directly dependent, 
has been developed, but is not yet mature enough for use in this application.   

So far, we have concentrated on the process on tracking objects.  However, initial detection and 
segmentation of the objects is crucial, in that it provides something to be tracked.  This object 
segmentation relies largely on the background color model, as the shape and pose information for 
an unobserved object remain constant priors.  The shape prior is a very low uniform probability 
across the entire image, on the order of 10-5, representing our complete lack of distinguishing 
information about the object.  The foreground color model is likewise uninformed, and is also a 
uniform distribution across the color space for each pixel.  These two models are then combined to 
produce the likelihood of a new object appearing at any pixel. 

 

5
256
1

,,,,, 10)|(),|(),,|( −⋅⋅===⋅== αα SnewobjectapnewobjectaCipiSCnewobjectap yxyxyxyxyx         (14) 

Here, yxa ,  represents the assignment of a specific pixel, and yxi ,  represents the observed intensity 

value at that pixel.  The α term continues to represent a normalization term, to ensure that the 
probabilities of all possible assignments add to 1.  This implies that the likelihood of each pixel 
belonging to a completely new object is a constant.  To determine the full probability of this 

occurrence at a given pixel, we need to determine value of the parameter α.  This is equivalent to 
normalizing all of the likelihoods of assignment at that pixel – all of the foreground objects, the 
background, and this possible new object.  This hypothesis of a new object will seem plausible only 

1.5 Object Segmentation & Data Association
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if the other assignments are themselves highly unlikely.  This is a probabilistic form of the old 
axiom, that when you eliminate the impossible, whatever remains, no matter how improbable, must 
be the truth.  If no other object has a strong claim on this pixel, and the background color model 
seems unlikely, we have no alternative but to entertain the possibility that a new object has 
appeared. 

Given a set of pixels which are part of new objects, we still have to decide how to segment them.  
Given the vast array of possible segmentations, we rely on spatial dependencies to help 
differentiate these various objects.  Using a simple rule of spatial connectivity, we gather the pixels 
into distinct objects, under the assumption that two simultaneously appearing objects appearing 
with spatial overlap is independent of the probability of one object occurring there, and thus is on 
the order of our shape prior, 10-5. 

These methods of tracking and segmentation are, of course, capable of error.  This is largely due to 
the limited number of hypotheses that can be maintained at each time step.  This can lead to 
erroneous assignment maps, which then have the potential to cause the tracker to diverge.  Even 
beyond the quality of the hypotheses maintained, there are natural occurrences in the world which 
can lead to changing assignment maps, such as a person getting out of a car, resulting in a single 
object becoming two.  To handle these corrections, and maintain correct tracking behavior, we 
recognize in our models the possibility of four events which cause significant changes in the 
assignments of certain pixels.  These are background objects, negative objects, object splits, and 
object merges.  Each of these is described in detail below. 

Background objects are exactly what their name suggests. These are groups of pixels which are 
objects in their own right, but which exhibit no perceptible motion.  For all purposes of tracking, 
these objects are a part of the background, and the tracker would best be served by not spending 
resources tracking and maintaining these stationary objects.   

Background objects occur when an object has entered the scene, and exhibited coherent motion, 
sufficient to meet our definition of an object.  However, this object eventually comes to rest, such as 
a car pulling into a parking space, and then does not move for an extended period of time.  This 
exact period of time can be defined by the user, and is typically set to something on the order of 20 
seconds to a minute, though it can be as long as is appropriate to the scene.  These objects are easily 
recognized as being completely stationary over this time, and the tracker makes the deliberate 
decision to place this object into the background.  The object is removed from the list of tracked 
objects, and its appearance is added into the background color model as appropriate.  Should the 
object start moving again after being designated as a background object, it will be detected as a new 
object, and will be tracked as such. 

The corollary to background objects is negative objects.  These are not true objects by our definition 
of the term, but rather groups of pixels which would appear to belong to neither the background 
nor to any existing object.  These are typically observed when an object that was previously 
considered a section of the background begins to move, such as a car leaving a parking space.  The 
object itself is detected as a new object, and is properly tracked.  However, the area in the image 
that the object previously occupied has changed.  Instead of observing the object at these pixels, as 
the color model is used to, we instead observe what was behind the object, which is expected to 
look significantly different.  This means that by our segmentation priors, we have a potential object 
at this location.  However, remember that our definition of an object requires correlated motion.  If 
the ‘object’ remains still, it cannot be considered part of the foreground.  Therefore, any new 
potential object is held in limbo for several frames, until its proper segmentation is determined, and 
the ‘object’ can be determined to be part of the foreground or the background.  Once motion is 
apparent, and the object is recognized to be part of the foreground, the tracker adds this to its list of 
objects, and begins reporting the trajectory of this new object.  This greatly reduces the number of 
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false positives maintained by the system, and allows the tracker to concentrate resources on those 
objects which are truly of interest. 

As we have alluded to earlier, not all parts of an object will continue to move together.  A person can 
set down a bag or take off a jacket, or a car can let out a passenger.  Objects in the real world 
separate all the time, and it is important for the tracker to be able to recognize these events, and 
track the distinct portions independently.  Therefore, we have built in to the tracker the possibility 
of an object to split into two or more pieces.  Without this capability, there is an implicit assumption 
the implementation that assignments cannot change, an assumption which is obviously false. 

An object split is based primarily on consistent differentiated motion of two sections of a single 
object.  However, as internal motion and self occlusion can greatly confuse the process, in our 
implementation we also use spatial separation to aid in segmentation of the object into its two 
parts.  The basis of the split model is to continually hypothesize that the object has separated into 
two distinct subcomponents, each with its own distinct motion.  Under this hypothesis, the object is 
allowed to have two different velocities, either of which could be used to describe the motion of a 
given pixel in the object.  These motion pairs are examined for support using the standard 

likelihood model, )|(),|(),,|( 111111 ttttttttt TpSApCAIp ++++++ µµµ .  If the secondary motion can 

show consistent support over several time steps for a coherent trajectory, as captured within tT , 

while still matching the observed images, the dual object hypothesis will develop a high likelihood.  
When combined with the relatively low prior probability for the event of an object splitting in two, 
this probability of separation can be compared to the probability of the object remaining whole.  
New hypotheses can be sampled from this relative probability to create an actual object split.  When 
an object is split, pixels are assigned to subparts according to spatial connectivity, and each subpart 
is then assigned to one of the two objects based on its predominant motion.  This allows some 
internal deformation, without unnecessarily complicating the models, yet enforcing that the motion 
of all of the pixels in an object continue to exhibit highly correlated motion.   

An object merge is merely the inverse problem: two objects now behaving in a highly correlated 
fashion, and in effect becoming a single object.  Consequently, the model for detecting such a merge 
is handled almost identically, but with the goal of detecting a single coherent motion to consistently 
describe the motion of both objects.  In both the case of split and merge, the assignment of object 
identities, which object maintains the consistent identity, is largely arbitrary, as the models are 
initially identical regardless of the choice of identity assignment. 

Over the course of this project, the algorithms have undergone continuous testing to evaluate the 
performance and justify the use of our models.  The most relevant of these tests are presented here, 
to demonstrate the capabilities and strengths of the methods used in this project.  Unless otherwise 
stated, all of the experiments described were run on data collected at 15 frames per second, 
providing uncompressed 640x480 Bayer pattern images with 8 bit intensities.  Experiments were 
performed on prerecorded images to ensure data invariance with reproducible results, though all 
processing was done in an online manner indistinguishable from a live video feed. 

The first experiments we present were performed to establish the performance of the color model, 
both objectively as well as in relation to Gaussian Mixture Model approaches.  In these experiments, 
video was collected of a large tree under windy conditions.  The goal of the experiment was to 
determine the accuracy of the color model under adverse background conditions, with changing 
color values where the leaves of the tree move.   

 

1.6 Empirical Evaluation 
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Figure 4: Left: raw video input.  Center: the probability of the color given a GMM color model for the 

background.  Right: the probability of the color given the multi-hypothesis color model for the background. 

The figure above shows a raw input image from the sequence on the left, with a heat map of the 
individual probabilities of that color, given the background color model, on the right, with blue 
being the most probable and red being the least probable.  Also shown for comparison is the 
probability map produced by an optimized version of the popular Gaussian Mixture Model method 
proposed by Stauffer, Grimson et al.  The multi-hypothesis color model can be seen to handle the 
motion of the leaves very smoothly, and easily predict the observed values as high probability.  The 
GMM method has a much more difficult time dealing with this method, despite being specifically 
designed for this type of motion, and tuned to this specific scenario.  Using these two color models 
in the tracking algorithm, the GMM model produced as many as seven false objects at a time within 
the leaves of the tree.  Furthermore, the GMM model initially failed to detect a person walking 
behind the tree, due to overly large variances on the models, and later only detected the head and 
the legs as two separate objects.  The multi-hypothesis color model, by comparison, detected the 
person walking behind the tree as soon as a single leg is visible, and returned absolutely no false 
objects. 

A number of similar experiments were performed to evaluate the multi-hypothesis color model, 
encompassing 16 minutes worth of footage from 8 different scenes involving potentially difficult 
backgrounds.  These scenes included foliage, reflections on parked vehicles, and rain.  During these 
16 minutes of test footage, there was only one false object detected, as a particularly strong gust of 
wind moved a tree violently.  This object disappeared almost immediately, as the tree settled back 
to its previous dynamic state. 

A separate set of experiments were designed to test the capabilities of the color during drastically 
changing lighting conditions.  Data was collected late in the day, with rapidly changing cloud cover.  
In this test set, the lighting conditions can be seen to change from bright illumination, resulting in 
distinct shadows and super-saturation of sections of the image, all the way to fully overcast, with no 
apparent shadows and significant under-saturation, and back again all within the space of 40 
seconds.  The multi-hypothesis color model performed equally well on this test set, exhibiting no 
false objects over the entire course of the 20 minutes of test data. 

We have seen the performance of the color model under empirical evaluation.  Similar testing was 
performed for both the shape and trajectory models, but these results are less intuitive on their 
own.  In particular, there are no alternatives in existing literature to the stochastic shape model to 
provide for comparison.  Therefore, we choose to present the results of the tracking system as a 
complete whole, under various conditions, to demonstrate the capability of these two models, along 
with the rest of the tracking system.   

These experiments were carefully tested on a large number of ‘natural’ scenes, or scenes that 
commonly occur without any interference on our part.  The data collected outside of the entrance to 
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the SIG offices, with a camera pointed down at the parking lot from a second story window, in the 
same type of configuration used by many existing security cameras.  This area has been observed to 
have similar types and density of traffic as a canonical scenario indicated by the project manager.  
Many vehicles can be seen throughout the videos, coming and going at various distances from the 
camera, along with significant pedestrian traffic originating both from the vehicles and from off 
screen.  Over a ten minute period, it was typical to observe an average of 28 objects enter the scene, 
with as many as seven separate objects appearing at a time.  Most of these objects traversed the 
entire field of view, with vehicles taking a few seconds, and most pedestrians taking an average of 
10-20 seconds.  The size of objects varied significantly, from as many as 15,000+ pixels on target, 
down to only six pixels observable for an object.   

One hour of test data was used in a blind test of the algorithm, in distinct ten minute clips, with a 
human providing ground truth for the data.  Over the course of this test, the algorithm 
demonstrated an object detection rate of 99.8%, with approximately 2% false positives.  The tracks 
of the objects were examined, and the tracking was determined to diverge an average of .05 times 
for any given minute that an object was on screen.  Data associations were evaluated by the number 
of dynamic occlusions that were observed, where one foreground object significantly overlapped in 
the image plane with another foreground object.  In these situations, the resulting objects were 
determined to maintain a proper consistent identification 98.5% of the time.  It is interesting to 
point that of all of these observed dynamic occlusions, 1.3% of the original events were not 
included in the evaluation, due to the human analyst being uncertain of the true associations.  Over 
the course of these videos, using a 2 GHz Pentium M processor, the frame rate of processed video 
never dropped below the 15 frames per second available from the camera.   

The performance of a complete video tracking system consists not only of the algorithms, but also 
on many aspects of the system hardware. The cameras, processing, and other equipment can 
impact the performance of the tracking system and it can therefore be useful to test the effects of 
varying some of the system variables. Of particular note were the effects of the image resolution 
and video frame rate on the quality of the tracks. 

For one set of experiments, we down-sampled the prerecorded video via averaging, to simulate the 
effects of a lower resolution sensor with the same distance and field of view.  We used down-
sampling factors of two, four, eight, and sixteen, producing video images as small as 40x30 pixels.  
Predictably, the tracking system continued to have difficulty tracking objects with less than six 
pixels on target, and with apparent motion of less than 0.25 pixels/frame.  With these exceptions, 
the resultant poses appeared very similar, with uncertainty and variance increasing roughly 
linearly with the down-sampling factor used.   

For our next set of experiments, we artificially varied the frame rate of the camera, feeding the data 
to the algorithm at seven and a half, five, two, and one frames per second.  Once again, the tracker 
performed remarkably similarly, with uncertainty and variance in the tracks seeming to grow 
slightly faster than linear with the reduction in frame rate.  Data associations degraded slightly, 
with persistent identification dropping as low as 95% for 1 frames-per-second (fps).  Track 
divergence maintained relatively steady through .06 per minute at 2 fps, and then dropped off to 
0.11 per minute at 1 fps.  The other significant difference appeared in particularly fast moving 
objects, which are on screen for less than 5 frames, which appear very spatially distant between 
frames.  These objects would sometimes not be detected as foreground objects, or appear as several 
different objects. 

Parameters of the observed scene were also varied, to test the ability of the tracking system to 
handle greater object density, approaching the level of crowds.  In these staged scenarios, a large 
number of people were asked to walk through the camera’s field of view, to augment the naturally 
occurring activity in the scene.  Two scenarios of ten minutes each were collected for blind testing.  



Final Report N00014-05-C-0294                                                                            November 2008 

 
 

Signal Innovations Group, Inc.   21 
 

During these experiments, as many as eleven objects can be observed on screen at a time.  
Consequently, the number of dynamic occlusions increased significantly, often with four or more 
objects in significant overlap at a time.  During this time, the rate of divergence increased to .097 
per minute for each object, and the percent of correct data associations dropped to 91%.  The 
percent of objects detected was 100%, with a false positive rate well below 1%.  During this entire 
period, the lowest that the frame rate ever dropped to was 12 fps, and then quickly recovered 
above 15 fps within a few frames.  
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2 Behavior Modeling 
Of significant importance for current and anticipated DoD activities, the ISR system developed 
under this C2CS effort is designed to detect asymmetric threats, with the goal of recognizing 
unusual behavior or activities. The technologies and systems developed under this effort are 
designed for semi-automated scene awareness, with the objective of recognizing behavior that 
appears atypical (e.g. atypical object motion, and dynamic characteristics of people and vehicles). 
 To that end, SIG has leveraged our previously developed technology to develop second-generation 
methods to adaptively learn the statistics of dynamic object behavior in video, while focusing on 
defining system requirements for sensor deployment by using field data (vs. highly controlled 
indoor data).  

In contrast to rule-based event detection algorithms, our anomalous behavior detection algorithm 
is designed to learn normal patterns of behavior through observation and report anomalous 
behaviors as they occur.  Our tracking algorithm produces poses, instantaneous positions and 
velocities, for each object every frame.  A pose is an instantaneous second order description of an 
object’s behavior.  Given many pose observations, we can model a probability density over the 
space of poses.  A pose of high probability given our model is normal, while a pose of low 
probability given our model is anomalous. 

We present in this section results for our anomalous behavior detection work using both 
instantaneous object state estimates (velocity and position) as well as results for behavior class 
detection using full object trajectories. 

2.2.1 Instantaneous observations 

Given a set of pose observations, we create a histogram density estimate over the space of poses 
smoothed with a truncated Gaussian.  Mathematically, a pose is a position in a 4-dimensional space.  
Let x and y be the horizontal and vertical positions respectively.  Let x’ and y’ be the horizontal and 
vertical velocities.  We define the object pose μ as 
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We treat each pose as an independent observation, and we assume that the dimensions of the pose 
are independent. 

Let w and h be the image width and image height.  Let x’min and x’max and y’min and y’max be arbitrary 

bounds on the horizontal and vertical velocities.  We build a ( ) ( )minmaxminmax yyxxhw ′−′⋅′−′⋅⋅  bin 

histogram with one bin for each integer in the sub-space [ ] [ ] [ ] [ ]maxminmaxmin ,,,0,0 yyxxhw ′′×′′×× .  

Poses are rounded to the nearest bin. 

Initially, an equal amount of weight s0 is placed in each bin of the histogram.  This has the desired 
effect of treating all poses as equally likely when no observations have been added to the behavior 
model.  In effect, we are imposing a uniform prior on our histogram density estimate.  Increasing or 

2.1 Problem Statement 

2.2 Behavior Models
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decreasing the amount of weight has the effect of increasing or the decreasing the strength of this 
prior. 

Let σ2 be the variance and [ ]rr :−  be the bounds of the truncated Gaussian we use for smoothing 

the histogram.  When we observe a new pose μ, we compute the weight ( )22
exp σµ−−= ps  for 

each point p in the space [ ] [ ] [ ] [ ]ryryrxrxryryrxrx +′−′×+′−′×+−×+− ,,,,  and add it to p’s 

bin in our histogram.  This has the effect of smoothing the histogram with a Gaussian.  The resulting 
probability density function is similar to that obtained via Gaussian kernel density estimation, but 
without the overhead of maintaining a list of observations.  It is not necessary to normalize each 
weight individually, since σ2 is always the same.  To find the probability of pose μ, we find its bin 
and divide the value in that bin by the sum of the values in all of the bins.  

2.2.2 Full Object trajectories 

In addition to the real-time anomalous behavior detection work described above, we have also 
developed models of the behavior of humans and vehicles in video sequences using their motion 
trajectories. In this work, the trajectories of objects are automatically extracted are sampled based 
on arc-length. The link between these trajectories and semantic labels of behavior are established 
using a boosting-based learning strategy. The effectiveness of the approach is demonstrated using 
behavior recognition and behavior prediction. In behavior prediction, the posterior probability that 
a test object will attain a known behavior at a future time is computed, conditioned on data 
available until the present time. 

For traditional classification approaches, it is preferable to compute features that have the same 
number of components across samples for designing classifiers. Hence raw trajectories extracting 
using our tracking results detailed above are not suitable as features for training classifiers because 
the length of trajectories varies across samples. In order to obtain invariance to time-
parameterization, the extracted trajectory is re-sampled according to its arc length. The trajectory 
r(t) = [x(t), y(t)] is thus represented as a function of arc-length as r(s). The trajectory is thus 
parameterized according to its arc length, r(s) = [x(s), y(s)]. It is easy to show that the arc length 
parameterization thus obtained makes the re-sampled trajectory invariant to time sampling. 

We assume a supervised setting to categorize objects into semantically relevant classes. The 
training set consists of the trajectory features x1, . . . , xNs , where xn, n = 1, . . . ,Ns and Ns is the number 
of training samples; and labels y1, . . . , yNs , where yn = (yn1, . . . , ynJ ) is a J-dimensional binary-valued 
vector. The value J is the number of classes of activities of interest; ynj = 1 indicates that the nth 
training sample belongs to class j. 

Boosting has proved to be an effective classification strategy that iteratively improves weak 
classifiers. Starting with a weak learner, a boosting algorithm generates weak hypotheses that are 
reweighted and combined to produce more accurate classifiers. At each step of the iteration, 
training samples are reweighted such that incorrectly classified objects get larger weights. Data 
samples on the margin thus affect the classification rule in each step. This is reminiscent of SVMs 
which maximize the margin between classes [1]. The connection to SVMs was described in [2] and 
[3]. Here we adopt the LogitBoost algorithm described in [4]. We use linear classifiers, which are 
less computationally intensive. Also, the method is parameter-free. The effectiveness of combining 
linear classifiers using bagging, boosting and random sub-space method was described in [3]. 
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Figure 5: China Lake outdoor surveillance dataset - sample trajectories for vehicle and person. 

 

2.2.3 Behavior Modeling Results 

We demonstrate the usefulness of the proposed method for long term behavior recognition and 
behavior prediction using the China Lake dataset. The China Lake dataset (Figure 5) consists of 
outdoor surveillance video sequences recorded at the China Lake facility. It consists of 
continuously-recorded video over a 2 hour period, at a frame rate of 20 fps, on a weekday during 
which movement of humans and vehicles are observed. Because of the depth of the field of view, 
objects persist in the scene for several seconds during which they undergo considerable scale 
changes. The data was recorded on a windy day that caused severe camera jitter. The windy 
condition proved to be a challenge to the motion stabilization software that was incorporated with 
the Sony camera. These challenges lead to several false alarms during detection and other low-level 
vision processes. 

 

  

Figure 6: China Lake behavior analysis recognition rates and confusion 

matrix. 

 

The dataset was divided into two halves; the first half was used for training and the second half for 
testing. The training set consists of the following classes of behavior: a vehicle is parked in the lot, a 
vehicle exits the lot, a person (or a group of persons) exits a vehicle and enters the facility, a person 
(or a group of persons) exits the facility and walks outside the field of view or enters a car in the lot. 
There is a significant amount of inter-class variability in these activities because of differences in 
entry and exit points and rate of execution of activities. The recognition rates (i.e., top match is 
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correct match) and mis-classification rates (i.e., top match is incorrect) are summarized in the first 
table in Figure 6. The results can be improved by incorporating shape or appearance based 
recognition, instead of relying solely on trajectories. The ability of the proposed method to predict 
the future behavior of objects entering the scene is demonstrated using the following target 
behavior: (C1) a person enters the facility after appearing on scene (i.e., after alighting from a 
parked car, or entering the scene on foot), (C2) a person appearing on scene walks past the facility, 
(C3) a vehicle appearing on scene is parked and (C4) a vehicle appearing on scene circles the lot 
and exits. In all these cases, the predicting classifiers is trained using the initial portion of the 
trajectories unlike during long term behavior recognition in which the entire trajectories of 
activities are used in training. Given the first quarter of a test trajectory, the probability that the 
tracked object will exhibit one of the target behaviors is computed. The resulting confusion matrix 
is also shown in Figure 6. Rows represent the initial portions of test trajectories and columns 
represent trained target behavior. 



Final Report N00014-05-C-0294                                                                            November 2008 

 
 

Signal Innovations Group, Inc.   26 
 

3 Hardware System Architecture 
The ONR-funded C2CS research effort carried by the SIG team has focused on the development of a 
full probabilistic framework and algorithms for object detection & tracking, anomalous behavior 
detection and sensor integration. Although not directly part of this effort, SIG has also separately 
developed a hardware system comprised of high-resolution color CCD cameras and a processing 
system based on a Firewire data network and laptop computers. While this system was not 
developed as a part of the C2CS effort, it has been useful in allowing the research team to develop, 
profile and test the algorithms developed for the C2CS effort. The different configurations of the 
hardware sensor and processing system used in this development effort are describe below, as well 
as a number of the different system parameters that were optimized to support data collection and 
analysis for the C2CS effort. 

Using this approach, the SIG research team was able to leverage the ONR-funded algorithm 
development effort to help design a more complete system consisting of algorithms, sensors and 
processing hardware.  As the algorithms matured, and experimentation was performed, both the 
software and the hardware evolved.  We briefly describe the hardware used, and the process of 
arriving at the current configuration. It should be noted that this parallel development of the C2CS 
anomalous behavior detection system and the separate hardware processing system also allowed 
us to demonstrate the real-time capabilities and performance of the SIG research team’s work for 
the C2CS community at the ONR C2CS PI gathering in May 2008. 

The original sensor hardware was initially chosen to be the IQeye 752 cameras from IQinvision.  
The IQeye 752 is a progressive scan network (100 Mbps Ethernet) camera with a 1/2 inch CMOS 
sensor.  It can capture 2.0 MP images at a maximum frame rate of 20 fps. 

During testing, these cameras exhibited several performance issues.  Most serious was the frequent 
occurrence of dropped frames.  These frame drops were often severe, and tended to coincide with 
significant changes in the image, such as large objects coming into view or fast lighting changes.  
Typically, between 1 and 5 seconds of video, or 10 to 50 frames of video, were lost at a time.  This 
was enough time for a person to walk about halfway across our field of view or for a car to cross our 
field of view entirely, making data association significantly more challenging than necessary. 

In addition, although the cameras are designed to capture 2.0 MP images at up to 20 fps, we 
observed a more typical daytime frame rate of 10 to 12 fps.  Furthermore, this frame rate was 
inconsistent over even short periods of time (5 to 10 minutes) and varied with lighting conditions, 
the amount of activity within the field of view, and image entropy.  Although these inconsistent 
frame rates did not significantly impair our tracking algorithm, they posed an obstacle to 
anomalous behavior detection.  Inconsistent frame rates coupled with a lack of time stamps on the 
individual images means that reliable object velocity estimates could not be obtained for the 
anomalous behavior detection algorithm. 

Further, the cameras are unable to deliver uncompressed data.  The cameras deliver only JPEG 
compressed data which, even at the highest quality setting, introduces block artifacts into the 
images.  JPEG compression works on 8x8 blocks of the image causing the value of any one pixel in a 
given 8x8 block to depend on the value of every other pixel in that block.  Practically, this means 
that when an object enters an 8x8 block and changes the color values of 2 or 3 pixels in the raw 
image, it changes the color values of all 64 pixels in the JPEG compressed image.  This significantly 
complicates color modeling by introducing a strong, unnecessary spatial dependency between 
pixels.  The easiest way to mitigate this problem is to down-sample the image by a factor of 8 in 
both dimensions, removing the spatial correlations in the data.  However, this negates the 
advantage of using a high resolution sensor and wastes unnecessary CPU cycles. 

3.1 Camera & network considerations
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Finally, JPEG decompression became the significant bottleneck in the performance of our tracking 
algorithm.  Although we achieved a frame rate of 7 to 8 fps on a live image stream on our target 
architecture, we determined that further speed increases could only be achieved by reducing the 
time spent on image decompression.  The easiest way to address this problem was to move to 
cameras that deliver raw image data. 

After encountering several performance issues with the IQinvision cameras, we chose to replace 
them with DBK 21AF04 cameras from The Imaging Source.  The DBK 21AF04 is a progressive scan 
Firewire (IEEE 1394) camera with a 1/4 inch CCD sensor.  It delivers 640 by 480 pixel 
uncompressed Bayer pattern images at stable frame rates up to 60 fps. 

The switch to The Imaging Source cameras has removed all of the performance issues described 
above for the IQinvision cameras.  However, due to the Firewire interface, and the limitation on the 
cable length for Firewire communications, the system cannot position the cameras as far from the 
laptop computer as was possible with the Ethernet cameras. 

We have experimented with a variety of CS-mount lenses.  Lens selection is a trade-off.  Shorter 
focal lengths provide a larger field of view and greater depth of field but fewer pixels on target and 
greater image distortion.  Our tracking and anomalous behavior detection algorithms are 
insensitive to image distortion, and our targets have been relatively close to our cameras.  So we 
have chosen to use fixed length 3.6mm Computar lenses.  This is a very short focal length that 
provides a wide field of view. 

We initially planned to implement our tracking and anomalous behavior detection algorithms on a 
DSP (digital signal processor) to facilitate real-time performance.  However, after porting large 
portions of the tracking algorithm from our development environment in MATLAB to the compiled 
language C, it became apparent that we could achieve real-time performance on a typical Microsoft 
Windows XP laptop computer without the need for specialized hardware.  This change of a target 
processing platform allowed more time on algorithm development and less on implementation.  
Using a laptop instead of a DSP also means that the implementation is more portable.  Our 
implementation can now be run on any Microsoft Windows XP PC with the .NET Framework and 
hardware comparable or superior to our target hardware. 

We chose a Dell Latitude D620 with an Intel Core 2 T7200 clocked at 2.00GHz with 2.49 GB of RAM 
as our target hardware.  We connect the camera to the laptop through a IEEE 1394 CardBus 
interface that also powers the camera. 

We chose ANSI C as the development language for the tracking and anomalous behavior detection 
algorithms.  This means that the implementation of our tracking and anomalous behavior detection 
algorithms is easily portable to any operating system and architecture with an ANSI C compatible 
compiler.  We chose Microsoft Visual Studio C++ and the .NET Framework as the development 
platform for our visualization and GUI.  We used the IC Imaging Control libraries for Visual C++ to 
acquire images from the cameras. 

3.2 Computational platform
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4 Sensor management 

The multi-senosr system was originally conceived with the cameras attached to a mechanical 
pan/tilt servo, with automated zoom capability.  This system was intended to provide a greater 
effective range for the field of view, while also providing high resolution images for the software 
system.  However, during the course of the development, it became clear that this approach had 
several potential problems. 

One of these problems was the speed of transition from one state to another.  Existing systems are 
often slow, taking on the order of a second to achieve a new state, and settle down.  During this 
process, the images obtained would experience significant blurring due to the motion of the 
camera, and would be of very limited use to the tracking software. Also, these systems are not 
extremely precise, and the actual motion achieved (and reported) would be merely an 
approximation of the desired motion. 

Another factor was the cost of missed opportunity.  While the system is looking at a certain section 
of the observable scene, there is a significant portion of the image which is going unobserved.  
Moreover, when the system is in motion, there is effectively no observation of the world, and the 
cost of missed opportunities jumps even more.   

Finally, the price of a PTZ system is significant, relative to the price of the camera, making it 
effectively cheaper to use three separate cameras to cover a wider area rather than one mobile one.  
Alternatively, a single high resolution, wide angle camera can be purchased less expensively, and 
producing more information with greater persistence of surveillance.  

Given these significant drawbacks, and the ease and expensive of alternative cameras, the 
mechanical pan/tilt/zoom capability was discarded. 

As an alternative approach to the mechanical system, a virtual pan/tilt/zoom capability was 
proposed.  This would use a wider angle view on a superior camera, and provide the same 
capability as the mechanical system.  The benefits of the system include reduced price, persistent 
observation of the scene, and no motion blur.  Additionally, the system has no moving parts, making 
it more reliable and less prone to physical failure, while consuming less power. 

The motivation behind this virtual PTZ is to focus the tracking on the areas of interest in the scene.  
Simple heuristic methods can be used to watch for significant change in the wide field of view, to 
look for new objects.  Once an object has been detected, the tracking algorithm can focus on the 
regions of the image relevant to following this object.  Additionally, processing can be performed at 
various levels of resolution in the image, depending on the need of the tracker, providing the same 
benefits of a zoom capability. 

Using this focus of interest, the analyst could then be presented solely with the ‘virtually zoomed’ 
area relevant to the detected anomalies.  Alternatively, the system can present the entire field of 
view, with graphical enhancements to draw the analyst’s attention to the areas of interest, which 
are displayed in the highest resolution available.  It is this latter scenario that has been built into the 
multi-sensor software application. This framework essentially allows us to decouple the resolution 
choices used for the processing of the foreground and background portions of the pixels data, 
improving the system computational performance while still supporting extraction and 
visualization of the regions of interest. 

4.1 Mechanical pan/tilt/zoom

4.2 Virtual pan/tilt/zoom 
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It is interesting to note that several transition applications for the multi-sensor project often 
involve a limited data transmission capability from the sensor to the analyst.  As currently designed, 
many of these systems will send the data out either at a significantly lower frame rate, or in a 
significantly compressed form, resulting in a drastic loss of relevant information. 

The development of the virtual PTZ system has created the potential for an improved solution to 
this problem.  Rather than present cropped, compressed, or low frame rate data to a user, the 
system can present entire field of view, with more information contained specifically in the areas 
that are of interest to the analyst.  These pixels relating to the foreground objects, particularly those 
deemed anomalous, can be transmitted with full color data at maximal resolution, resulting in no 
loss of information for the analyst.  The background can be presented in a compressed manner, in 
one of several ways.   

One of these approaches would involve no data sent from the sensor for those pixels relating to the 
background.  Instead, the user relies on a canonical model of the background, such as a single frame 
sent at the start of the transmission. This template for the background would have the foreground 
pixels overlaid on top of it, to provide contextual information to the analyst. 

An alternative approach would continue to send information on the background pixels, but this 
data would be transmitted as significantly lower resolution, using only grayscale information.  
Additionally, the background image could use a reduced palette, requiring fewer bits to represent 
the range of grayscale intensities.  The visual effects of this type of compression can be seen in the 
output images in the application software. 

The final alternative presented would maintain continual updates to the background at full 
resolution and with the full color palette available.  However, the effective frame rate for the 
background would run significantly slower than the full speed provided for the foreground.  
Instead, the background would be updated progressively across scan lines at each time step, 
utilizing whatever available bandwidth is left over after transmitting the foreground.  Each time 
step would pick up where the last one left off, resulting in a continual, cyclic update to the areas of 
least interest to the analyst, adaptively changing the update rate to accommodate the available 
transmission capability at the time. 

Initial results from using this type of intelligent compression scheme, utilizing the reduced 
resolution scheme for the background pixels, indicate that approximately 40 times fewer bits are 
required to transmit the data, when compared to the raw data files, without a loss of information in 
the relevant areas of the image.  With the additional use of existing lossless image compression 
techniques, this reduction can achieve an average of 110 times the original image size.  Compare 
this to a typical jpg compression format, which causes significant loss of data, particularly in the 
fine details, which can achieve approximately 15-20 times fewer bits for the data observed, 
depending on the ‘quality’ of the compression used.  This allows for significantly increased data 
throughput to the analyst, while still providing nearly all of the relevant information that the 
analyst will need. 

4.3 Data compression 
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5 Compressive sampling 
 

The SIG C2CS effort at object tracking as seen in the previous sections has been shown to provide an 
effective approach for data compression if only moving foreground objects are of interest in a video 
scene. This would be appropriate for applications where the goal is to detect & track objects as well 
as to detect anomalous object behaviors. In such application, we could clearly compress high rate 
data streams based on selective representation of objects and background to send only data 
relevant to tracking objects. 

The concept of compressive sensing (CS) also allows information to be extracted from sensor data 
(including video image sequences) using significantly fewer samples relative to conventional 
uniform sampling techniques. As indicated in our Year III planning letter, this related technology 
has been the subject of an effort to examine the approach of combining CS approaches to track 
objects in time-multiplexed video imagery. 

Compressive Sensing is the theory which allows one to sample significantly less observations than 
the Shannon sampling theorem would normally permit.  For a band-limited signal, with highest 
possible frequency = fM, Shannon theorem states we need to sample at a rate of at least 2*fM for 
perfect signal reconstruction.  The compressive sensing theorems of Candes and Tao [5], and 
Donoho [6] have shown that, with modest additional assumptions, one can have perfect signal 
reconstruction with far fewer samples than the Shannon Theorem implies.  These assumptions are: 

1.  There is structure to the signal (i.e. the signal is not random). �� There exist a basis for which 
the representation of the signal of interest is sparse �� The signal is compressible 

2.  The notion of “observing a sample” is generalized to include linear projections of the signal in 
addition to the instantaneous signal amplitude. 

Assumption 1 is easily satisfied by almost all relevant signals one wishes to exploit, while 
assumption 2 is satisfied by assuming the existence of an analog device which can perform these 
projections during the sampling process. 

Let us assume that the underlying, high resolution, signal is given by F.  The basis assumed under 
assumption 1, is represented by the matrix B.  Then assumption 1 says that F = Bα, for some 
coefficient vector α.  The projection samples in assumption 2 can be represented by a “sampling” 
matrix, P.  Each row of P represents a sampling of the underlying signal.  The dimensions of P are 
MxN, where M<<N.  This means we are only taking M samples of the signal information, but 
previous theory would imply the need for N samples to be taken.  The compressed sensing equation 
becomes.  

PBαY =           (16) 

where the observed signal samples are given in the M dimensional vector Y.  To recreate the 
desired signal, one needs to estimate the coefficient vector α.  It has been shown that assumption 1 
allows us to estimate the coefficients required for perfect signal reconstruction through the 
following optimization: 

  

PBαYwithα
α

argmin
α

1optimal ==
      (17) 

5.1 Background on Compressive Sensing
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There are numerous threads of research regarding the solution to equation 2.  Among many 
techniques, greedy algorithms and Bayesian algorithms have been developed to estimate the 
appropriate coefficient vector alpha; each of which has its own strengths.  In the subsequent 
analysis, the Bayesian approach developed by Ji, Xue, and Carin [7] is utilized.  They have chosen a 
noisy model for the underlying measurement vector, so the compressive sensing equations become 

  Where n is a noise vector which represents measurement noise as well as coefficients which are 
not identically 0 but can effectively be treated as zero.  The Bayesian approach to the reconstruction 
then becomes 

There has also been renewed interest in looking at the relationship between the projection and 
basis matrices (P and B), as there are key theoretical subtleties involved with the design of these 
matrices which allow for perfect signal reconstruction.  There is also a thread of research involving 
the noise properties of the measurements observed and the effect on algorithms for approximating 
the solution to Equation 19.  A brief tutorial paper by Baraniuk [8] is a helpful start to those who 
wish to review many of the foundations of the theory and the author also maintains a website of 
useful references for those interested in the latest research 
(http://www.dsp.ece.rice.edu/cs/#app). 

 

5.1.1 Compressive Imaging 

The underlying theory with regards to imaging sensors is the same as that for signals.  The major 
difference is that imaging sensors are not generally conducive to applying the theory to real world 
applications.  For example, an imaging sensor designed for surveillance applications would 
currently collect video image information for on-board or ground-based exploitation processing.  
The Focal Plane Array (FPA) is the typical device for collecting the image information and these are 
designed and built to collect the required number of pixel intensities to represent the scene being 
surveyed.  A design involving compressive imaging would have to provide an optical architecture 
for the standard FPA to collect projections of the scene or offer a fundamentally different type of 
FPA.  In order to fundamentally improve current imaging systems, one would want an architecture 
which will collect the same number of measurements as the current imager, but is able to use the 
compressive imaging theory to fundamentally improve some aspect of the scene which is being 
sensed.  This is a subtle but important point:  if the current application solution employs a FPA 
which has K elements and samples a K dimensional image, then for the compressive imaging theory 
to be of practical utility, one would want to measure K pieces of information and rebuild an image 
scene with N>>K dimensions.  For medical imaging applications, the desired image to be sensed 
was always N dimensional with a K dimensional sensor.  The fundamental question is:  How can the 
current image be improved from what the current sensor produces by employing compressive 
imaging?  Some possible applications and architectures are presented next. 

5.1.2 Applications 

In DoD surveillance applications, the Field-of-Regard (FOR) has become too large for a single 
imaging sensor to capture the activities for timely exploitation.  Using a scanning imaging system 

nPBαY +=   (18) 
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will require large areas of the FOR to go un-sensed while the scanner is imaging another area.  
Multiple sensors or platforms will result in a possibly unmanageable data glut and require extra 
processing (such as sensor registration or mosaicing).  This application has been addressed by 
Muise and Mahalanobis [9] and Muise [10].  For image-based Automatic Target Recognition (ATR) 
applications one has the distinct possibility that there is significant mismatch between what is 
being sensed, and what is optimal for the ATR to make a decision.  For example, the imaging sensor 
is perhaps wasting photon collection resources to image irrelevant and confusing clutter 
information when more photon collection on the target of interest could increase the ATR 
performance.  This application has been presented by Mahalanobis and Muise [11].  In object 
tracking applications, the current estimate of the object state is only as good as the revisit rate of 
the imaging sensor.  One would ideally want to use the imaging sensor to help determine the 
current position of the target at time samples determined by the object’s velocity; while imaging 
other, static, portions of the scene at a lower sampling rate.   

If one was to use standard imaging devices, each of these applications describes the desire to 
exploit an image with more information than what is actually being collected.  Thus, is it possible to 
get this extra image information from fewer sensed pixels?  We next address a different paradigm 
in extracting intensity information from a detector array which will allow one to estimate what is 
happening “between the frames” of a video sequence. 

We set up the problem and application as a sampling problem for video imagery.  We also wish to 
establish applications for which traditional video sampling (1 image frame per time interval) will 
not capture the dynamic nature of the underlying scene. 

In Figure 7, we show a sequence of image 
frames which represent a video sequence.  
It is shown as a discrete representation of 
multiple frames of standard imagery.  In 
order to characterize a time multiplexing 
imager, we need to consider this data in 
the analog sense.  (i.e. a dynamic scene 
represented continuously in time).  The 
sampled representation implied by this 
figure is for illustration, we will not be 
sampling this continuous stream of 
intensity values in the traditional way.  

Let us consider that for our application, a 
particular signal-to-noise ratio (SNR) is 
required for the exploitation algorithms to 
have adequate performance.  This required 
SNR will lead directly to a required 
integration time, Ts for the detector 
elements in the focal plane array (FPA) to 
gather sufficient photons to meet the SNR 

constraints.  For typical video cameras fielded to address typical exploitation tasks, these 
constraints do not prohibit us from capturing the essential dynamic of a typical scene for timely 
exploitation.  For most well-designed camera and for most dynamic scenes, standard 30 or 60 Hz 
frame rates seem to be adequate to capture imagery at suitable SNR levels for exploitation 
purposes. 

5.2 Time Multiplexing

 

Figure 7: A Representation of an analog cube of image 

intensity information with spatial and time axes. 
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Let us then consider applications for which standard sampling of the data cube of interest does not 
result in exploitable video sequences.  These applications involve the attempt to detect and track 
objects which are moving much faster than the required integration time, Ts, will be able to capture.  
If there is significant motion during the integration time, Ts, then traditional image sampling will 
not capture this motion. 

 

Figure 8: Left - The cube of image information which needs to be sampled.  The integration time Ts reflects that 

all of the photons within this cube are required for sufficient SNR imagery.  Right - The traditional methodology 

for sampling a video frame.  We integrate the photons along the red rectangular elements to arrive at a pixel 

intensity value. 

Consider the surveillance application to detect and track moving objects where the sensor 
properties and/or target dynamics lead to poor SNR imagery.  This could be manifested in the need 
for utilizing and uncooled IR camera for cheap and/or small platform night applications.  The 
poorer SNR properties of an uncooled IR camera could be solved by a longer integration time.  
However, this increased integration time could lead to motion blur for fast moving targets.  Even 
typical 30 Hz video can lead to significant motion for highway traffic between frames.  An increase 
of the integration time to accommodate a poorer performing sensor may lead to the inability to 
sense highway traffic.  Poor lighting conditions in general would lead to the desire for a longer 
integration time and affect performance similarly.  Turning attention away from camera constraints 
and toward the scene dynamics, any high velocity target will be difficult to track with standard 
video frame rates.  Tracking bullets or missiles can often require specialized high frame rate 
cameras to capture and track the object motion.  As the frame rate increases, the integration time 
decreases and the image SNR will become poorer.  There are only so many photons to collect during 
Ts.   

We propose to extract data from the sensor at the same essential rate as with traditional sampling, 
but with information being extracted throughout the entire integration time Ts.  Consider Figure 9 
which describes an alternate methodology for sampling the data cube. 
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Figure 9: Left – The traditional methodology for sampling a video frame.  We integrate the photons along the red 

rectangular elements to arrive at a pixel intensity value.   Right – A compressive sampling architecture.   The 

collections of all same colored “pixels” are integrated together as a large “super-Pixel”.  There are N super-Pixels 

collected at N different time intervals.  The spatial distribution of the same colored pixels are randomized. 

 

There exist smart and adaptive FPA 
technologies which can gather this 
encoded information in the manner 
outlined in Figure 9.  In order to test 
the ability for the compressive 
measurements to “see” between 
samples of a traditional camera we 
use some standard video data 
collected and test the concepts by 
simulation.  The video sequence 
utilized is presented in Figure 10.  

This video is taken as the ground 
truth high frame rate sequence 
which we attempt to reconstruct.  It 
is 128x128 units of spatial 
dimension and 128 time units.  We 
assume that the required integration 
time for acceptable SNR imagery is 
the entire 128 time samples or Ts = 

128.  This does not exactly conform to our specified applications where the motion is faster than 
the required SNR will support, but the video will serve as a proof-of-concept simulation.  The 
results of sampling this data cube by the methodologies in Figure 9 are shown in Figure 11. 

The mathematical formulation for the encoding and the compressive decoding is given in the next 
section. 

 

 

 

Figure 10:  A 128x128x128 data cube used for simulations 
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Figure 11: Left – The traditional methodology for sampling the data cube.  The moving object has been averaged 

away during the integration at the FPA.   Right – The result of compressive sampling on the data cube.  There are 

128x128 numbers (the same as the traditional sampling).  The information appears random, but it is encoded to 

allow for estimation of the moving object during the sampling interval. 

Let J be the NxNxN cube of image intensity information which one would integrate into one video 
frame.  Further, let Ji be the ith time slice of this video cube.  Further, let us reorder Ji into a vector by 
lexigraphical ordering and without ambiguity, we also refer to this collection with the variable J.   
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Thus, each column of J represents one time slice of the data cube, and J is an N2xN matrix of 
intensity values.  With this notation, the image collected on the FPA for a traditional video camera 
would be 
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This is represented as the image presented in the left side of Figure 11.  In order to describe the 
collection of compressive measurements, let us define some intermediate variables: 

Let Si = the N2x1 vector which is 1 for a pixel element belonging to “super-Pixel” i.  Thus, since there 
are N defined super-Pixels, there are N vectors Si.  We will also be defining these superPixels at each 
of N time steps throughout the data cube, thus let 

5.3 Mathematical Foundations
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Further, let 
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an NxN2 matrix.  Then for the jth time step, we collect the information 

  

j
j

j JSP = ;         (24) 

 

which is an Nx1 vector of projection information.  The collection of this information over all time 
steps yields the collected information 

 

[ ]N21 PPPP L=        (25) 

 

This is N2 numbers and is represented by the array given in the right side of Figure 11. 

 

In order to decode this information with the theory of compressive sensing, we must relate the data 
we wish to rebuild to a sparse representation.  Clearly the difference image between two successive 
time steps will be sparse as the static portions of the scene will be zero.  Consider the average image 

over a considerable time span, J .  Then the encoded average image will be given by  
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We form the difference codes by  

( )JJSPPD −=−=          (27) 
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Only those pixels which have motion during the sequence will contribute energy to the encoded 
data in the matrix D.  This is the essence of the sparse data collected.  The next step is to decode this 
information into an estimate to which pixels in the kth time step have exhibited motion. 

5.3.1 Finding Pixel Motion 

Consider the kth time step.  We select the k-1, k, and k+1 columns of the matrix D and call this 
collection of data Dk.  These columns contain the 3xN pieces of information gathered from the k-1, k, 
and k+1st frames of imagery from the data cube.  We further assume that the image Jk has not 
changed during this, very short, collection.  Thus, our collection of information is given by the 
simple linear equation 

 

[ ]( )JJSSSD k
1kk1k −= +−

k        (28) 

 This is an Nx3 collection of encoded numbers. If we define a basis, B, for which our difference 
image resides, then we have the system 

 

[ ] ( )JJBαBαSSSD k
1kk1k −== +− wherek , 

Or simply 

SBαD =k       (29) 

This is an underdetermined linear system where Dk is a 3Nx1 observation vector, S is an 3NxN2 
code matrix, B is an N2xN2 basis function matrix, and α is an N2x1 coefficient vector.  This is exactly 
the sparse representation-compressive sensing setup where the solution is given by Equation 
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2v ρPBαYargmin αα̂             (19) as  
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This minimization is solved by a Bayesian algorithm developed by Ji, Xue, and Carin [7]. The results 
on the data cube from Figure 11 are given in Figure 12. These results utilize a basis set which 
consists of shifted box functions.  Each basis function is a 3x3x3 collection of ones and this basis set 
is shifted over all the N2 pixels in the underlying difference image being estimated. 
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Figure 12: Top Left: The information scene by a traditional camera.  Top Right: the vector of data collected during 

the compressive sampling (a particular column of figure 4).  Bottom left:  The ground truth video.  This is 

unobservable to the system as we are assuming the motion is too fast from traditional sampling.  Bottom right:  

The successive estimates of the difference imagery collected and estimated as per equations 28 through 30. 

Given the algorithm outlined above, one must design an implementation strategy that allows 

computation as the streaming encoded information is output from the FPA.  Firstly, P , the average 
encoded information vector is collected and updated as new data is collected.  This process should 
have a relatively long time constant as we are trying to capture the static portions of the scene.  
However, there should be careful attention to not over average this information as slow 

environmental and lighting changes should be reflected in the current estimate of P .  Then, after 3 
frames of encoded information have been collected, we have the information required to populate 
the information required to formulate Equations 28 through 30 and the estimated motion is 
calculated.  The new information is added to the columns of the encoding matrix S and the data 
vector D and Equation 30 is solved once again.  A further coupling between subsequent estimates 
can be made by increasing the dimensions of the basis function to 3x3x5 pixel box functions.  This 
was seen to be beneficial in reducing some of the noise.   

A typical camera would integrate over time (in this case 128 time steps) and produce the video 
such as Figure 11; when compressively sampled, it would look more like the right side of Figure 11 .  
Using the algorithm from equations 28 through 30, we estimate the difference image between 
successive frames.  With this data, we can track groups of moving pixels.  Once these tracks are 
identified, then we know the location of moving object between frames.  Shifting the collected data 
spatially will lead to the ability to reconstruct the image of the moving object and place it in the 
average scene in the correct location in space and time.  Our initial simulations show that this 
approach clearly can find and track moving objects. 

5.4 Implementation 
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Our initial implementation, however, does give a poor result for the appearance of the moving 
object as the object itself is smoothed over space and time – i.e. the object image is smeared.  A 
better approach would be to find a more accurate reconstruction for the moving object based on 
hypothesis about specific pixels that are part of the object based on the difference image. These 
potential improvements will the subject of future work extending these initial results. 

In the last section, we turn to exploitation.  In the context of general compressive imaging, can we 
perform object classification directly on the gathered compressive measurements without first 
reconstruction the underlying image? 

In this section, we examine the ability to discriminate objects by directly operating on the 
compressive measurements without first reconstructing the image. As we have shown earlier, 
images of specific objects of interest can be reconstructed by minimizing a weighted L2 norm 
metric. This results in a closed form analytical solution for the reconstruction matrix R which 
related the reconstructed image y to the measured projections u as  

Ruy =
.       (31) 

Let us now consider the quadratic correlation filtering detection algorithm trained to detect 
patterns in the images. The image y is transformed by the QCF matrix S to a set of features v that 
represent energy in clutter and target basis, i.e. 

v = Sy        (32) 

However, since y is estimated by Eq. 15, it is easy to see that the compressive measurements can be 
directly related to the QCF features as 

v = SR u       (33) 

The advantage of Eq. 31 is that the dimension of the matrix SR is considerably smaller, and 
therefore few computations are required to directly calculate v from u, rather than first reconstruct 
the image via  Eq. 33, and then applying Eq. 32.  

Eq. 33 shows an approach for directly embedding the QCF discrimination algorithm (trained on 
high dimensional images) directly into the compressive sensing process. This allows the 
compressive measurements to be directly used for exploitation without the need to first 
reconstruct the image. However, the question arises how this compares to a discrimination 
algorithm which is trained directly the compressive measurements (i.e. not only the high-
dimensional images, but in the considerably smaller compressive measurement space).  

Preliminary results show that QCF trained on the images (in the high-dimensional space) does not 
perform as well as when it is trained directly on the smaller dimensional measurement vectors. 
However, this can be due to several reasons that require further investigation. The data below was 
obtained by using every other image in the data set to train and to test. The high correlation 
between the test and training condition may favor the results obtained on the smaller dimensional 
compressive measurements. Secondly, since the relations are all linear, there can be no 
fundamental gain in processing and at best, the full dimensional QCF in Eq. 33 will perform as well 
as when the algorithm is directly trained using the compressive measurements. However, if non-
linearities were introduced in the reconstruction matrix R, or if the weighting of the norm were to 
be varied to further support discrimination, there will be a premise where differences (and perhaps 
improvements) in the results can be expected. 

5.5 Discrimination using Compressive Measurements

5.6 Preliminary Results
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Figure 13: The scatter plots of the QCF features computed by (a) embedding the high-dimensional solution in the 

reconstruction process does not produce as good a result as in (b) where the data shows the results of training a 

QCF solution directly on the lower dimensional compressive measurements. 
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6 Technology Transition 
One of the key successes of this SIG C2CS project has been the transition of the technology 
developed here to other DoD-funded research effort in several different key application areas.  

This transition has taken place in two key areas:  

(1) Transition of key concepts regarding the integration of a software algorithm and a human 
analyst through the use of active learning, and 

(2) Transition of conceptual mathematical models and approaches for Bayesian tracking to 
airborne persistent surveillance applications. 

 In the following sections, we provide more details on these transitions and their initial results. 

The airborne persistent surveillance application has become a critical area for automatic processing 

of sensor data to track and detect moving objects as well as to perform behavior analysis of those 

objects detected. While this application area is beyond the scope of this C2CS project, SIG has 

achieved transition of significant tracking technology to support persistent surveillance. One key 

goal for persistent surveillance is to achieve real-time capability for processing sensor data. This 

capability is critical in order to provide improved response capability to events of interest. One 

approach to providing this capability using SIG’s C2CS developed technology is to deliver high 

quality metadata of a surveillance scene using tracking, classification metadata derived from raw 

imagery on the surveillance platform. This approach has the potential to avoid pitfalls of off-the-

shelf compression method because it can results of tracking algorithms to identify objects of 

interest and can separately provide scene data provided for contextual information. 

 

Figure 14: Initial results showing singe frame capture from implementation with fully automated registration 

with detection and tracking performance comparable to ground-based video for multiple small objects  

Based on technology initially developed under ONR C2CS funding, SIG has completed efforts for 
development & testing detection and tracking algorithms for airborne IR data sets funded through 
NVESD. As part of this effort, SIG has adapted the original approaches for background modeling, 
object detection and Bayesian tracking and has created a new implementation to account for the 
different problem constraints of the wide-area persistent surveillance problem. This application of 
the C2CS technology has been applied to an Army-funded effort for tracking using Army UAV data 
sets. Figure 14 shows some initial results where this new adapted tracking approach has been 

6.1 Airborne Persistent Surveillance
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applied to persistent surveillance data. Additionally, SIG has been funded for an Air Force effort 
applying this extended technology to CLIF persistent surveillance data sets with funding through 
AFRL.  

In the initial work performance for this C2CS effort, SIG examined the concept of using expected 
information gain to make decisions about sensor deployment. In particular, this concept was 
manifested as the sensor management architecture (SMA), where expected performance gains in 
object tracking are balanced against costs of sensor employment/redeployment. An important 
extension of this work under C2CS was a transition of this same concept to the use of expected 
information gain that could be used to improve performance of a human analyst that is tasked to 
process EO or IR imagery in order to detect targets through change detection.  

Under this approach, the use of relative information gain was transitioned to and Army-sponsored 
(NVESD) program where the additional data was available as labels provided by a human analyst. 
Figure 15 shows some initial results where this learning concept was applied to a change detection 
application for finding targets in airborne imagery. Additional work was also done in extending this 
application of active learning to Army NVESD airborne target detection to both off=-line batch 
processing as well as real-time streaming video imagery. The development & testing on airborne IR 
data sets funded through NVESD and additional follow-on work to this effort is being pursued by 
SIG for a number of different customers. 

The initial results for this application of active learning to a combined system with and automated 
target classification algorithm and an “analyst in-the-loop” demonstrate effectiveness of active 
learning for improving analyst performance and efficiency. Figure 15 shows some basic 
performance curves where analyst processing time (in minutes) is reduced at the same time as 
analyst performance is improved through the reduction in target false-alarm reductions. 

 

Figure 15: Initial results showing use of active learning for improving analyst performance and efficiency 

 

6.2 Active Learning
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